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Abstract: Researchers from across the world are seeking to develop effective treatments for the
ongoing coronavirus disease 2019 (COVID-19) outbreak, which arose as a major public health issue
in 2019, and was declared a pandemic in early 2020. The pro-inflammatory cytokine storm, acute
respiratory distress syndrome (ARDS), multiple-organ failure, neurological problems, and thrombosis
have all been linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fatalities. The
purpose of this review is to explore the rationale for using photobiomodulation therapy (PBMT) of the
particular wavelength 1068 nm as a therapy for COVID-19, investigating the cellular and molecular
mechanisms involved. Our findings illustrate the efficacy of PBMT 1068 nm for cytoprotection, nitric
oxide (NO) release, inflammation changes, improved blood flow, and the regulation of heat shock
proteins (Hsp70). We propose, therefore, that PBMT 1068 is a potentially effective and innovative
approach for avoiding severe and critical illness in COVID-19 patients, although further clinical
evidence is required.

Keywords: SARS-CoV-2; COVID-19; photobiomodulation; viral replication; inflammation; 1068 nm;
nitric oxide; thrombosis; cytoprotection; Hsp70

1. Introduction

In December 2019, reports of the novel infectious coronavirus disease 2019 (COVID-19)
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in
Wuhan, China. By the end of February 2020, SARS-CoV-2 had spread to 51 countries and,
with the rapid growth in case numbers crippling all aspects of life globally, the situation
was declared a pandemic by the World Health Organisation (WHO) on 11 March 2020. As
of 27 April 2022, there have been over 508 million confirmed cases of COVID-19 worldwide,
with 6.2 million deaths (https://covid19.who.int (accessed on 27 April 2022)), giving rise
to an urgent need for effective and safe treatment strategies.

Due to the pro-inflammatory and pro-thrombotic nature of COVID-19, photobiomod-
ulation therapy (PBMT) could be used to modulate the immune and thrombotic system
and repair damaged host tissues. Here, we review the specific use of 900–1068 nm near
infrared (NIR) light in the treatment of patients infected with SARS-CoV-2, including direct
and indirect antiviral effects.

2. Structure and Replication of SARS-CoV-2

The newly identified SARS-CoV-2 is an enveloped, non-segmented, positive sense
ssRNA virus with a diameter of 65–125 nm (Figure 1). The virus is comprised of four strutu-
ral proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N), alongside
several accessory proteins [1,2]. SARS-CoV-2 is a β-coronavirus of the Coronavirinae family
that also contains the SARS-CoV and MERS-CoV viruses, responsible for the 2003 Severe
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Acute Respiratory Syndrome (SARS) and 2012 Middle East Respiratory Syndrome (MERS)
outbreaks, respectively [1]. At an early stage of the current outbreak, genome analysis
identified 79.6% sequence similarity between SARS-CoV-2 (then named 2019-nCoV) and
SARS-CoV, hence the name SARS-CoV-2 [3].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 16 
 

 

family that also contains the SARS-CoV and MERS-CoV viruses, responsible for the 2003 
Severe Acute Respiratory Syndrome (SARS) and 2012 Middle East Respiratory Syndrome 
(MERS) outbreaks, respectively [1]. At an early stage of the current outbreak, genome 
analysis identified 79.6% sequence similarity between SARS-CoV-2 (then named 2019-
nCoV) and SARS-CoV, hence the name SARS-CoV-2 [3]. 

 
Figure 1. Structure of SARS-CoV-2, showing the four main structural proteins and the viral genome. 
Adapted from “Human Coronavirus Structure”, by BioRender.com (2022). Retrieved from 
https://app.biorender.com/biorender-templates (accessed on 13 January 2022). 

SARS-CoV-2 is a highly infectious respiratory pathogen, with human transmission 
occurring through airborne respiratory droplets from coughs and sneezes, and surface 
contamination [4–6]. There is evidence that SARS-CoV-2, like SARS-CoV, uses the host 
angiotensin-converting enzyme 2 (ACE2) receptor as an entry point into cells; SARS-CoV-
2 is able to enter HeLa cells expressing ACE2 from a number of organisms, including hu-
mans, but is unable to enter the untransfected cells [3]. The normal function of ACE2 is in 
the control of blood pressure, catalysing the hydrolysis of angiotensin II into the vasodi-
lator angiotensin (1–7) [7]. Thus, ACE2 is expressed in a number of cell types around the 
body. The immunohistochemistry of human tissue samples has shown that ACE2 recep-
tors are found in lung alveolar epithelial cells, nasopharyngeal and oral mucosa, the en-
dothelium, the brain, the gastrointestinal tract, and in peripheral organs, e.g., the liver and 
kidneys [8–10]. 

Figure 2 shows the mechanism of SARS-CoV-2 entry into a target cell. Upon the bind-
ing of the viral S protein to the host ACE2, the host cell TMPRSS2 cleaves the S peptide, 
activating the S2 domain and driving membrane fusion between the viral envelope and 
host cell membrane. Both ACE2 and TMPRSS2 are highly expressed in alveolar epithelial 
type II cells [11], explaining why COVID-19 typically affects the lungs the most. The virus 
is then able to release the genomic material into the host cell cytoplasm, where the ssRNA 
acts as mRNA to be translated and produce the viral replicative enzymes. The N proteins 
assist in translation by binding tightly to the RNA, making it more accessible to host ribo-
somes [2]. The new viral proteins assemble, forming small vesicles to be exported out of 
the cell by exocytosis, and allow the new virions to spread around the body. 

Figure 1. Structure of SARS-CoV-2, showing the four main structural proteins and the viral genome.
Adapted from “Human Coronavirus Structure”, by BioRender.com (2022). Retrieved from https:
//app.biorender.com/biorender-templates (accessed on 13 January 2022).

SARS-CoV-2 is a highly infectious respiratory pathogen, with human transmission
occurring through airborne respiratory droplets from coughs and sneezes, and surface
contamination [4–6]. There is evidence that SARS-CoV-2, like SARS-CoV, uses the host
angiotensin-converting enzyme 2 (ACE2) receptor as an entry point into cells; SARS-CoV-
2 is able to enter HeLa cells expressing ACE2 from a number of organisms, including
humans, but is unable to enter the untransfected cells [3]. The normal function of ACE2
is in the control of blood pressure, catalysing the hydrolysis of angiotensin II into the
vasodilator angiotensin (1–7) [7]. Thus, ACE2 is expressed in a number of cell types around
the body. The immunohistochemistry of human tissue samples has shown that ACE2
receptors are found in lung alveolar epithelial cells, nasopharyngeal and oral mucosa, the
endothelium, the brain, the gastrointestinal tract, and in peripheral organs, e.g., the liver
and kidneys [8–10].

Figure 2 shows the mechanism of SARS-CoV-2 entry into a target cell. Upon the
binding of the viral S protein to the host ACE2, the host cell TMPRSS2 cleaves the S peptide,
activating the S2 domain and driving membrane fusion between the viral envelope and host
cell membrane. Both ACE2 and TMPRSS2 are highly expressed in alveolar epithelial type II
cells [11], explaining why COVID-19 typically affects the lungs the most. The virus is then
able to release the genomic material into the host cell cytoplasm, where the ssRNA acts as
mRNA to be translated and produce the viral replicative enzymes. The N proteins assist in
translation by binding tightly to the RNA, making it more accessible to host ribosomes [2].
The new viral proteins assemble, forming small vesicles to be exported out of the cell by
exocytosis, and allow the new virions to spread around the body.
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3. COVID-19 Symptoms and Complications

COVID-19 can manifest in a variety of ways: many individuals infected with SARS-
CoV-2 remain asymptomatic, but severe complications are seen in other patients [12]. The
most common symptoms are fever, cough, and fatigue, mirroring those of SARS and MERS.
In some patients, muscle pain, sputum production, headache, haemoptysis, dyspnoea,
and diarrhoea, among others, may present as symptoms [6,13]. With increasing disease
severity, complications such as acute respiratory distress syndrome (ARDS), hyperinflam-
mation, organ failure, and death become more prevalent [6,13,14]. A Chinese study of
over 44,000 confirmed COVID-19 cases found 81% were defined as mild to moderate (from
asymptomatic to mild pneumonia), 14% were severe (dyspnoea, blood oxygen satura-
tion <93%, and/or lung infiltrates >50%), and 5% were critical (respiratory failure and/or
multiple organ dysfunction or failure) [15], although these percentages vary with time
and location.

Though COVID-19 was initially thought to be just a viral pneumonia, SARS-CoV-2
infection can, in fact, lead to multiple organ dysfunction [6,8]. The ability of SARS-CoV-
2 to target multiple organs has been attributed to a combination of widespread ACE2
distribution and systemic cytokine storms [16,17]. A cytokine storm is an uncontrolled
inflammatory response due to an excessive release of pro-inflammatory cytokines by
the host’s immune system [17,18]. The initial release of cytokines is a form of defence
against SARS-CoV-2 by the innate immune system, but when production becomes excessive
in critically ill patients, it may cause a serious pro-inflammatory condition [19]. Many
cytokines show elevated levels in COVID-19 patients, including interleukins (IL-1β, IL-2,
IL-7, IL-8, IL-9, IL-10, IL-17) and tumour necrosis factor alpha (TNF-α) [6,20]. The systemic
inflammation caused by increases in serum and plasma cytokine levels has been linked to
both disease severity and the likelihood of ARDS [17,21], and the cytokine storm remains
the key cause of COVID-19 deaths. Therefore, harnessing the immune system to reduce this
exaggerated inflammation could be vital to effectively manage patients with COVID-19 [22].

Thrombosis is emerging as a significant contributor to COVID-19 mortality. COVID-
19 patients, especially those in the intensive care unit (ICU), show a high incidence of
hypercoagulability in the form of venous and arterial thromboembolism. The most common
coagulation events in COVID-19 patients are pulmonary embolisms (PEs) [23,24], which
are blood clots in the lungs. PEs can harm the lungs by restricting blood flow, lowering
blood oxygen levels, and affecting other organs. Large or multiple blood clots can be
fatal. Other thrombotic complications of COVID-19 include venous thromboembolism
(VTE), deep-vein thrombosis, ischemic stroke, myocardial infarction, and microvascular
thrombosis [23,25].

3.1. Neurological Symptoms

A wide variety of neurological manifestations are being increasingly observed in
COVID-19 patients [26–28]. A retrospective case study of 214 hospitalised patients with con-
firmed SARS-CoV-2 infection discovered that 36.4% displayed neurological symptoms [28],
and a 6-month study of the medical records of 236,379 COVID-19 survivors showed an
incidence rate for neurological and psychiatric diagnoses of 33.6% [27]. Anosmia and ageu-
sia (loss of smell and taste, respectively) are particularly prevalent, with a Korean study
observing these symptoms in 15.3% of 3191 patients with early-stage COVID-19. Of the
patients exhibiting these symptoms, the majority (79.6%) had asymptomatic to mild disease
severity [29]. COVID-19 symptoms of the central nervous system (CNS) include impaired
consciousness, headache, acute cerebrovascular disease, ischemic stroke, encephalopathy,
delirium, and seizures. Effects on the peripheral nervous system (PNS) include loss of
smell and taste, nerve pain, and Guillain–Barré syndrome [28,30,31]. Mao et al. (2020)
found that increased severity of COVID-19 increases the likelihood of CNS symptoms,
with significant increases in acute cerebrovascular disease and impaired consciousness.
Evidence is emerging of psychiatric complications of COVID-19, particularly mood and
anxiety disorders [26,32]. A study of 103 COVID-19 patients compared with 103 matched
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controls found that those with COVID-19 had higher levels of depression, anxiety and
post-traumatic stress symptoms (p < 0.001) [33].

There are two pathways by which SARS-CoV-2 may infect the CNS: the hematogenous
route or the neuronal route [30,34–36]. Through the hematogenous route, the virus that
has infected the lower respiratory tract infects the endothelial cells of the lung capillar-
ies, followed by astrocytes and macrophages. The virus enters the blood stream and is
transported to the blood–brain barrier (BBB). The respiratory virus can damage the BBB
endothelial cells, gaining entry to the brain [30,35–37]. The alternative neuronal route
begins with viral presence in the upper respiratory tract [30]. The virus targets peripheral
nerve endings: primarily olfactory neurons of the nasal epithelia [36,38,39], but potentially
also the vagus nerve through the lung–gut–brain axis [40–42]. Viral pathogens can cross
neurons and synapses, exploiting the motor proteins dynein and kinesin for retrograde and
anterograde movement along axons [35]. The transneuronal pathway from the olfactory
epithelium to the olfactory bulb and olfactory nucleus is supported by the detection of
SARS-CoV-2 from nasal swabs, anosmia caused by COVID-19, and high ACE2 levels in
the nose [36,43]. As SARS-CoV-2 is a novel coronavirus, the route it uses to enter the CNS
has yet to be demonstrated experimentally. However, given the 79.6% sequence similarity
with SARS-CoV [3], it is reasonable to assume the two viruses share similar neurotrophic
mechanisms [34]. Therefore, it is possible that SARS-CoV-2, like SARS-CoV, uses both the
hematogenous and neuronal routes to hijack the nervous system [37,44].

Baig et al. (2020) relate the neurological symptoms of COVID-19 to the expression
of ACE2 in the CNS [37]. Immunohistochemistry shows that ACE2 is expressed in the
endothelia and the smooth muscle cells of the brain [9]. More recent studies have found
ACE2 expression in neurons and glia [45,46]. Within the neurons, ACE2 protein expression
is highest in the cell body, with lower expression in the axons and dendrites. This was
demonstrated using immunocytochemistry studies of human pluripotent stem-cell-derived
neurons [47]. Though it is established that SARS-CoV-2 is able to infect the CNS, it remains
unknown if the neurological issues observed in COVID-19 patients are due to direct viral
binding to ACE2 in the brain or to the cytokine storm causing systemic hyperinflammation,
including neuroinflammation [36,48].

3.2. Long COVID

COVID-19 is now known to cause post-infection sequelae, termed long COVID or
post-COVID-19 syndrome. A WHO-led Delphi consensus defined this condition by symp-
toms lasting more than two months (with no other cause) in patients with confirmed or
probable past SARS-CoV-2 infection [49]. Symptoms are wide-ranging in both expression
and severity, affecting almost every organ system in the body, including the respiratory,
nervous and cardiovascular systems. A preprint meta-analysis of 40 studies concluded that
there were 100 million cases of long COVID as of November 2021, with fatigue, shortness of
breath, insomnia, joint pain and memory problems being the five most common symptoms.
The prevalence of long COVID is 43%, which increases to 57% if a patient required hospi-
talisation for acute COVID-19 [50]. As cases of COVID-19 have more than doubled to 508
million since the meta-analysis was written, it can be estimated that cases of long COVID
now stand at over 200 million. With so many unknowns about the cause and mechanism of
this very common syndrome, finding treatments which may work to combat the chronic
and delibertating symptoms is a vital next step in the research community.

4. Photobiomodulation

Photobiomodulation therapy (PBMT) shows promise as a self-administered, noninva-
sive treatment option for COVID-19. Shortly after the 1960 discovery of the monochromatic
light source [51], PBMT was accidentally discovered by the Hungarian Endre Mester in
1967 [52]. Mester was using a red laser to reduce the size of cancerous tumours in mice,
but the laser had a lower power than he intended. Instead of observing changes to the
tumour as predicted with the high-power laser, he noticed that the wounded skin of the
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laser-treated mice healed faster. The laser caused hair to grow back faster in the shaved
areas and the wounds healed better, so low-level light appeared to be promoting tissue
repair. Mester spent the rest of his career investigating this phenomenon, carrying out
further promising experiments on wounds, skin defects, burns, ulcers and bedsores [53,54].

PBMT is defined as a light-based therapy for the stimulation, enhancement and healing
of cell and tissue function. This use of low-energy light to stimulate biological effects was
formally named low-level laser therapy (LLLT), although this name was later changed to
the more accurate ‘photobiomodulation’. This was because light-emitting diodes (LEDs)
can more safely deliver the same beneficial effects as lasers, and ‘low-level’ was considered
subjective [55–57]. The effects of PBM appear to be limited to a specified set of wavelengths
of light, most commonly the red (600–700 nm) and near infrared (NIR, 750–1300 nm) regions
of the electromagnetic spectrum [56,58]. More current investigations have identified distinct
optical windows within the near infrared spectrum (810nm and 1064nm) with marked
differences in production of oxygenated hemoglobin and cytochrome c oxidase [59]. PBM
effectiveness is also dependent on the energy dosage supplied [58], following a ‘biphasic
dose response’ curve. This obeys the Arndt–Schulz law, where doses higher or lower
than the optimum dose cause reduced or, in the case of very high energy levels, negative
therapeutic effects via ‘bio-inhibition’ [56,60,61].

Molecular Mechanisms of PBMT

The work of Tiina Karu from Russia has revolutionised the understanding of the molec-
ular mechanisms of PBMT. Karu demonstrated that a mixed valence form of cytochrome
c oxidase (CCO), the terminal unit IV enzyme of the mitochondrial electron transport
chain (ETC), is the primary photoacceptor for red-NIR light in mammalian cells [62–64].
The identification of CCO as the photoreceptor explains the wavelengths that commonly
show biological effects from PBM and allows the molecular mechanisms of PBM to be
proposed (Figure 3). Often 600–700 nm and 760–900 nm (red and NIR light, respectively)
are used in PBMT, and these wavelengths correspond with peaks in the CCO absorption
spectrum [56,58,63]. CCO is a large enzymatic complex located within the inner mitochon-
drial membrane. The complex contains two copper centres (CuA and CuB) and two haem
centres (a and a3). Upon NIR irradiation, nitric oxide (NO) dissociates from the O2-binding
site (a combination of the a3 and CuB centres) of CCO [65]. NO is inhibitory as it competes
with O2 for the binding site, so the NO dissociation increases CCO enzymatic activity [66].
CCO oxidises cytochrome c and utilises the released electrons to reduce molecular O2.
Upon binding of this reduced product to mitochondrial protons (H+), H2O is generated
within the mitochondrial matrix, increasing the H+ gradient across the inner membrane.
ATP (adenosine triphosphate) synthase uses this electrochemical potential to synthesise
ATP [65,67]. Many studies, both in vitro and in vivo, have demonstrated that PBM causes
an increase in intracellular ATP (reviewed in [68]). The activation of the ETC through PBM
also increases reactive oxygen species (ROS), Ca2+ ions, and cyclic Adenosine Monophos-
phate (cAMP). These signalling molecules induce changes in transcription factors such as
the nuclear factor kappa-light-chain-enhancers of activated B cells (NF-κB, [69]), and result
in long-term cellular effects, as detailed in Section 5.

In recent years, other wavelengths have been shown to also have beneficial biological
effects, for example, 1068 nm [70] and 1072 nm [71–73]. Although CCO will absorb less
light at these wavelengths, lower scattering means the longer wavelength light is able to
travel deeper within tissues and stimulate more CCO and ion channels. The absorption
of 1068–1074 nm light causes vibrations of nanostructured water, leading to the opening
of calcium ion channels, such as transient receptor potential (TRP) channels [74,75]. In
addition, 1068 nm NIR light generates peak transmission through water molecules, so less
energy is used to enter biological materials [70,76]. For these reasons, this review focuses
on 1068 ± 25 nm.
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5. Rationale for PBMT to Treat COVID-19

PBMT has been successful in the treatment of viral infections and respiratory diseases,
suggesting feasibility for the treatment of COVID-19. Low-level 1072 nm infrared light was
shown to significantly reduce the time taken for HSL (herpes simplex labialis) lesions to
heal compared to sham treatment [71]. Whilst the antiviral mechanisms of this therapy are
not yet fully understood, some feasible explanations are explored in this section.

It has also been established that PBMT reduces lung inflammation in experimental
models, including LPS-induced pulmonary inflammation in mice [77] and rats [78], and
in mice submitted to cigarette smoke to mimic chronic obstructive pulmonary disease
(COPD) [79]. Several small-scale, peer-reviewed studies report the benefits of PBMT on
respiratory disorders in human patients, including asthma [80] and COPD [81]. Shorter
recovery times, less medication reliance, fewer respiratory symptoms, and improved
radiological, immunological, and blood markers are all positive outcomes of PBMT seen in
these patients [22].

The first major clinical trial of PBMT for COVID-19 patients was carried out by Vetrici
et al. [22]. Despite the low sample size, the study demonstrated that adjunctive PBMT
improved the clinical status of COVID-19 pneumonia above standard medical care. PBMT
(808 nm and 905 nm) applied to the lungs increased peripheral oxygen saturation, relieved
pulmonary symptoms, and improved chest X-ray findings. This suggests that PBMT could
be used to improve COVID-19 patients’ respiratory and clinical conditions, decreasing the
requirement for ventilator support and ICU stay. Similarly, a placebo-controlled trial of
thirty severe COVID-19 patients found that, whilst the length of ICU stay did not change
between groups, patients treated with 905/633/850 nm PBMT-sMF (PBMT combined
with static magnetic field) showed reduced diaphragm atrophy and improved ventila-
tory parameters and lymphocyte count [82]. A case report by Sigman et al. (2020) used
a combination of 808 and 905 nm PBM to treat a 57-year-old man with a severe case of
COVID-19 pneumonia. The patient’s radiological findings, respiratory rates and oxygen
requirements improved significantly after treatment, with no need for the predicted venti-
lator treatment [83]. These clinical reports all support the use of PBMT to treat COVID-19
and reduce the pressure on health services.

Up to now, most studies in the field of PBMT have focused on 600–700 nm and
780–850 nm wavelengths, but irradiation by 1060–1080 nm light has shown significant

BioRender.com
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behavioural effects including cognitive enhancement [84,85] and executive functions [86],
and so would be worth investigating for the neurological, as well as immune, features of
COVID-19. The next sections (5.1–5.5) explore the rationale for these longer wavelengths of
PBMT to treat COVID-19.

5.1. Cytoprotection

Research from our laboratory has provided evidence that CAD neuronal cells exposed
to 1068 nm light are significantly protected against β-amyloid(1–42)-induced cell death [70].
This cytoprotection is also observed in human lymphocytes treated with IR-1072, but not
IR-880, indicating these higher wavelengths of light could be more useful for improving
cellular viability [73]. If photobiomodulation could protect immune, pulmonary, glial, and
neuronal cells from SARS-CoV-2 infection by photobiomodulation, perhaps via a photo-
preconditioning mechanism, this would offer a prospective, simple, and non-invasive
treatment for COVID-19, including the prevalent neurological consequences.

5.2. iNOS and NO

It is thought that iNOS (inducible nitric oxide synthase) is vital in a host’s immune
response against pathogens and is induced in the case of inflammation or infection. In
an investigation of MRSA infection in mice, 1072 nm light caused long-term changes in
iNOS, with mRNA expression increasing by 2.7 times compared to control mice 5 days
post-treatment [72]. Similar effects have been observed in human lymphocytes, with
quantitative immunoblotting showing 4.9 times higher iNOS protein expression following
IR-1072 treatment, but not with IR-880 [73]. PBMT, therefore, increases nitric oxide (NO)
both indirectly, through an increase in iNOS expression, and directly, through the photo-
dissociation of NO from the CCO enzyme.

NO may be responsible for several of PBMT’s positive effects. As a well-known
inhibitor of apoptosis, as seen in vitro [87–89], NO may improve the viability of various cell
types against stressors such as SARS-CoV-2 infection. NO interacts with reactive oxygen
and nitrogen intermediates to form a range of antimicrobial molecular species [90] which
are also useful in an immune response. Most importantly, NO inhibits RNA replication in
several types of viruses [91,92], including SARS-CoV [93] and SARS-CoV-2 [94]. NO targets
viral proteases; in SARS-CoV-2, it is believed that the S-nitrosylation of the 3CL cysteine
protease inhibits the protease cleavage of viral polyproteins [94]. NO is also a vasodilator,
improving blood flow to tissues, which is explored further in Section 5.4.

Whilst the exact mechanism by which NIR increases iNOS is unknown, it is established
that the resultant NO plays a key role in PBMT that could be utilized in COVID-19 treatment.
Due to its ability to reduce platelet activation, and the role of platelet adhesion in thrombosis,
NO has further potential to treat thrombosis in COVID-19 patients [95,96].

5.3. Inflammation

One study [72] found that IR1072 treatment increased mRNA expression for cytokines
responsible for the acute phase of the immune response (IL-1β, TNF- α, IL-6 and MCP-
1). After 3–5 days, these levels returned down to control levels: a normalization that
is necessary to sustain the immune response’s homeostasis. This would be useful to
combat COVID-19, where the immune response is often delayed, but excessive. PBMT
has significant advantages over corticosteroids which have been researched for their anti-
inflammatory use against COVID-19 [97], including a lack of side-effects and no known
interactions with the underlying conditions common in COVID-19 patients. Numerous
studies have demonstrated that PBMT reduces pro-inflammatory cytokines and increases
anti-inflammatory cytokines in in vivo models [97–99].

PBMT also shows multiple effects on reactive oxygen and nitrogen species (RONS).
It appears that PBMT may decrease ROS in cells already undergoing oxidative stress,
e.g., in animal disease models, but increases ROS production in normal, healthy cells [100].
The transcription factor NF-κB also shows contradictory behaviour with light irradiation,
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with two papers from a single laboratory showing both the activation [101] and inactiva-
tion [102] of NF-κB by 810 nm therapy. The authors postulated that NF-κB signalling is
enhanced in normal, healthy cells treated with PBM, but is reduced when PBMT is applied
to inflammatory cells with sufficient antioxidants. NF-κB up-regulates genes encoding
pro-inflammatory cytokines, intensifying the inflammation. It may be that PBMT initially
acts in a pro-inflammatory manner but, after a short period of time (a few days), gives
the usually more desired anti-inflammatory response. This may provide ideal protection
against the cytokine storm of COVID-19. An initial burst of RONS by light treatment could
be a means of preconditioning the cells to oxidative stress, such as in viral infection. As
the scientific focus for COVID-19 therapies shifts towards attenuating the patient’s inflam-
matory response, the use of PBMT is supported to reduce hospitalisations and deaths,
especially related to the cytokine storm.

5.4. Blood Flow and Thrombosis

PBMT improves blood flow and, therefore, oxygen availability and consumption [75].
One mechanism by which PBMT enhances blood circulation is through the increase in
vascular endothelial growth factor (VEGF): a protein that stimulates the formation and
growth of blood vessels to increase oxygen supply [72]. The transcription of VEGF is
regulated by hypoxia-inducible factor (HIF) 1-α which, in turn, is stabilised by the dis-
sociation of NO from CCO [103]. The PBM-induced increase in NO (Section 5.2) and
photo-activation of CCO is, therefore, able to stimulate blood flow, alongside the direct
vasodilator action of NO. An increase in blood flow and vasodilation affects inflammation
by increasing oxygen to the organ under oxidative stress, and by facilitating the transport
of immune cells to the irradiated site, which is beneficial in an antiviral therapy as it allows
for faster rehabilitation. A 1991 study of 60 preoperative oncology patients found that
PBMT increased the total immune response, including changes to leucocytes, lymphocytes,
monocytes, immunoglobulins, and active T-lymphocytes [104]. The photoactivation of the
immunoresponse, alongside the photomodification of antigens, suggests that PBMT may
be useful in an antimicrobial capacity, with the increased blood flow guiding the activated
immune cells to the inflamed area.

Due to the rising body of evidence suggesting that COVID-19 may predispose throm-
botic disease, there has been a global effort to prevent venous thromboembolism (VTE)
in COVID-19 patients (during hospitalisation and after discharge) and to discover the
ideal management of patients with both COVID-19 and VTE diagnoses. Some of the ther-
apies under investigation for COVID-19 may pose distinct drug–drug interactions with
common antithrombotic medications, highlighting the need for non-drug treatments for
patients with COVID-19-induced thrombosis. Importantly, in a recent extracorporeal blood
flow porcine study of PBMT, the aggregation of platelets in the control group increased
throughout the 24 h post-operative period, whereas platelet aggregation in the 700–1100 nm
group remained stable or decreased in intensity [105]. This shows the potential of PBMT to
decrease the risk of fatalities from thrombosis by reducing aggregration. Furthermore, a
2008 study with a model of embolized rabbits explored the safety of combining the throm-
bolytic tissue plasminogen activator (tPA; Alteplase) and transcranial near-infrared laser
therapy (TLT, i.e., PBMT). PBMT administration did not significantly affect the increase in
hemorrhage incidence caused by tPA, and the combination treatment did not exacerbate
haemolysis. Therefore, TLT may be administered safely either alone or in combination with
tPA, because TLT has no effect on hemorrhage incidence or volume [106].

5.5. Photo-Preconditioning by Heat Shock Proteins

Chronic PBMT upregulates heat shock protein (Hsp) expression, in particular, Hsp70,
which is vital for cytoprotection. Using an Alzheimer’s disease mouse model, Grillo et al.
(2013) showed that a number of Hsps were regulated by chronic IR1072 treatment for
5 months [107]. Hsp60, Hsp70, Hsp105, and phosphorylated Hsp27 were all significantly
(p < 0.05) increased in the PBMT compared to age-matched controls. De Filippis et al.
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(2019) also showed changes in Hsp70 with IR radiation, in this case, a Q-switch 1064 nm
treatment to human keratinocytes [108]. Mechanisms of Hsp action may explain some of
the previously discussed actions of PBMT, including the increased expression of proinflam-
matory cytokines [108]. Hsp70, alongside Hsp90 and Hsp27, upregulates proinflammatory
cytokines IL-6 and TNF-α, and it was shown with rat and mouse microglial cells that this
is through Toll-like receptor (TLR-) 4 activation [109]. Asea et al. (2002) demonstrate that
Hsp70 induces cytokine production via MyD88 and NF-κB modulation [110].

Importantly for COVID-19 treatment, the synthesis and release of Hsp70 may have
direct and transient antiviral effects. These Hsp70-induced antiviral effects have been
seen in treatments for numerous viral infections, including influenza A virus [111], rhi-
novirus [112], HIV [113], and Sindbis virus [114]. The mechanism by which Hsps disrupt
viral synthesis has yet to be discovered, although it is suggested that Hsp70 interferes on
several levels by blocking transcription and/or translation. Hsp70 may prevent translation
by interacting with nascent viral polypeptides directly, or by competing with the viral
translation mechanisms [111,113]. The release of Hsp70 by virus-infected cells stimulates
macrophage and microglia innate immune responses. A positive feedback loop is generated
between viral gene expression in host neurons and extracellular Hsp70 release [115,116].
Extracellular Hsp70 acts as a damage-associated molecular pattern (DAMP) molecule, bind-
ing TLR2 and TLR4 [116–118]. This interaction stimulates signalling pathways involving
interferon regulatory transcription factor (IRF-) 3 and NF-κB that go on to increase the
expression of type 1 interferons (IFN-β in the brain) and antigens presenting complexes
(major histocompatibility complexes; MHC) [116,119]. The expression of the antiviral
cytokine IFN-β by macrophages in the brain is vital for neuronal immunity to some, but
not all, viruses [120].

The importance of Hsp70 in preventing thrombus formation has also been recently
shown. WT mice showed delayed thrombus formation, but unaltered tail bleeding time,
when given the Hsp70 inducers TRC051384 and tubastatin A [121]. These inducers act
through two different pathways, highlighting the specific role of Hsp70′s in preventing
clots. Even when aspirin was given at the same time, Hsp70 inducers did not raise the risk
of bleeding.

Hsps are increased with high temperatures, a common symptom in COVID-19 patients.
This rise in chaperones may be beneficial for cytoprotection and as an anti-viral agent
against SARS-CoV-2. However, the medications COVID-19 patients may take to decrease
their temperature will reduce levels of Hsps. Therefore, PBMT in conjunction with these
medications may be ideal, maintaining Hsp70 for its antiviral and protective effects whilst
allowing bodily temperatures to return to normal physiological levels.

6. Conclusions

Despite a level of natural antiviral immunity, the high infection rate of COVID-19
suggests that this is not sufficient protection against SARS-CoV-2 infection for millions
worldwide, especially for immunocompromised or fragile individuals. With 11.3 billion
vaccine doses administered (https://covid19.who.int, accessed on 18 April 2022), and
rapid and PCR tests allowing us to monitor cases and reduce infection spread, we are
fortunately in a better position than in the earlier days of this pandemic. Nevertheless, we
are still in the pandemic and, with high case numbers continuing, it remains imperative
to find treatments options for those with COVID-19 complications, and for the inevitable
coronavirus viral pandemics of the future. One such treatment is PBMT 1068 nm, which
could be applied at both the early (acute infection) and late (long COVID) stages of COVID-
19 to the nasal cavity or torso/lungs (or to the brain in the case of neuroprotection from
neurological symptoms, or to the skin with respect to dermatological symptoms). It could
be utilised for those with severe COVID-19, or as a preventative strategy in high-risk
individuals who could benefit from PBMT when their disease is still in its early stages.
Unlike immunosuppressants, PBMT does not cause a delay in the antiviral response [122],

https://covid19.who.int
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Moreover, the effects of PBMT are localised, without any adverse side effects or drug–drug
interactions, and it acts to boost the body’s natural immune response.

Our findings indicate that PBMT 1068 nm is indeed a viable therapeutic option against
COVID-19 viral infection and its complications, including the cytokine storm, ARDS, and
thrombosis. As shown in pre-clinical studies, PBMT is able to treat acute lung injuries
and ARDS though a reduction in pulmonary inflammation, an increase in oxygenation,
and the regeneration of injured tissues. The molecular mechanisms of PBMT support this,
with Figure 4 summarising the interconnected effects. We propose that NO and Hsp70 are
major molecular players in the positive actions of PBMT 1068 nm through the prevention
of coronavirus replication, the induction of vasodilation, and increases in blood flow and
ATP, together with PBMT’s anti-inflammatory and anti-thrombotic actions. To objectively
evaluate the efficacy and safety of the promising 1068 nm PBMT on COVID-19, randomised,
double-blind, placebo-controlled clinical studies are recommended as soon as possible.
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